Effects of zinc chloride supplementation during vitrification of ovarian tissue in pigs.

Emma Hicks

Cryopreservation

- Four Major Steps:
 - Addition of cryoprotectant
 - Freezing at low temperatures and storing in liquid N_2
 - Warming tissue
 - Thawing cells and removing cryoprotectants

(Adedelahi et al., 2013)

 Ovarian tissue cryopreservation preserves large numbers of oocytes versus other techniques.

(Adedelahi et al., 2013)

• Cryopreservation of ovarian tissue is conducted to help preserve the fertility of biomedical models.

(Mouttham & Comizzoli, 2016)

Follicular Damage and Stress

• Ovarian tissue is susceptible to more damage during vitrification due to various cell types and water permeability.

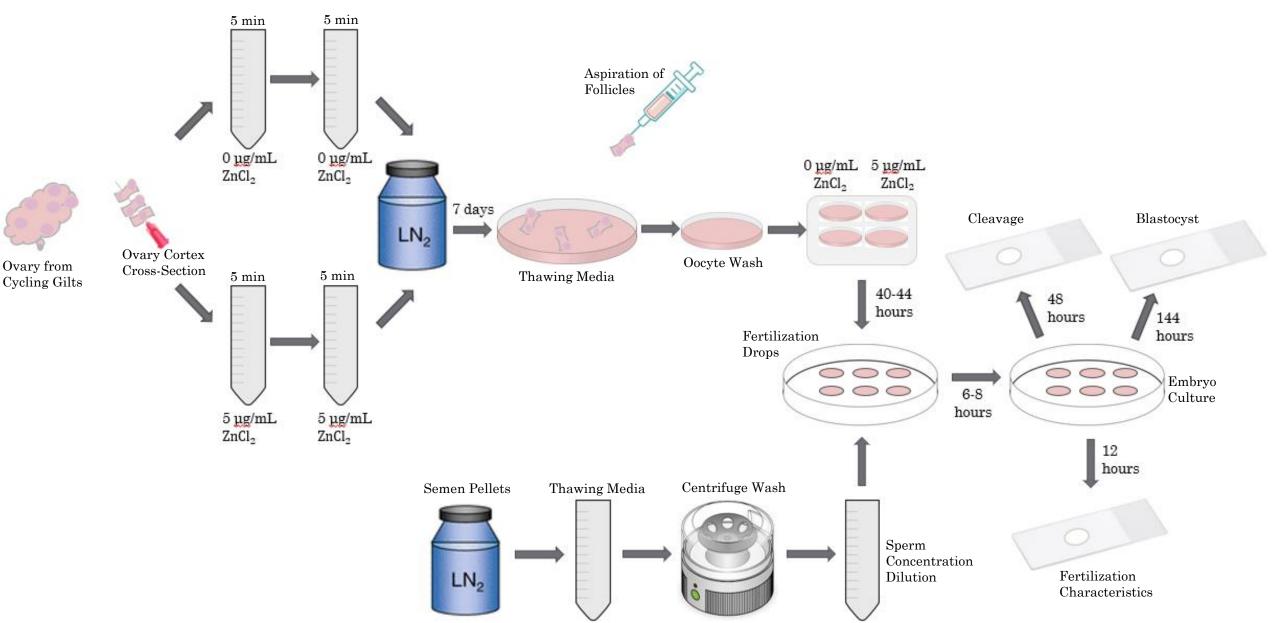
(Adedelahi et al., 2013)

 Vitrification increases reactive oxygen species in oocytes, leading to decreased viability.

(Gupta et al., 2010)

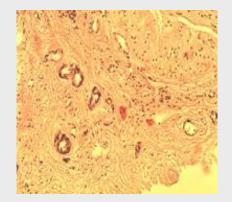
 Cryoprotectant agents can induce oxidative stress thus causing structural and functional changes in tissue.

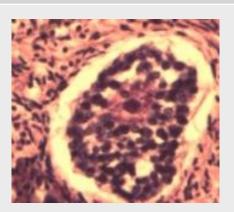
(Tian et al., 2015)

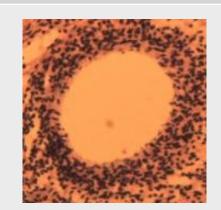

• Zinc reduces oxidative stress by synthesizing proteins that are effective in reducing reactive oxygen species.

(Marreiro et al., 2017)

Objectives


- Determine the effects of adding 5 $\mu g/mL$ $ZnCl_2$ during vitrification on:
 - *in vitro* follicle development
 - post-thawing fertilization success
 - embryonic development


Experimental Design

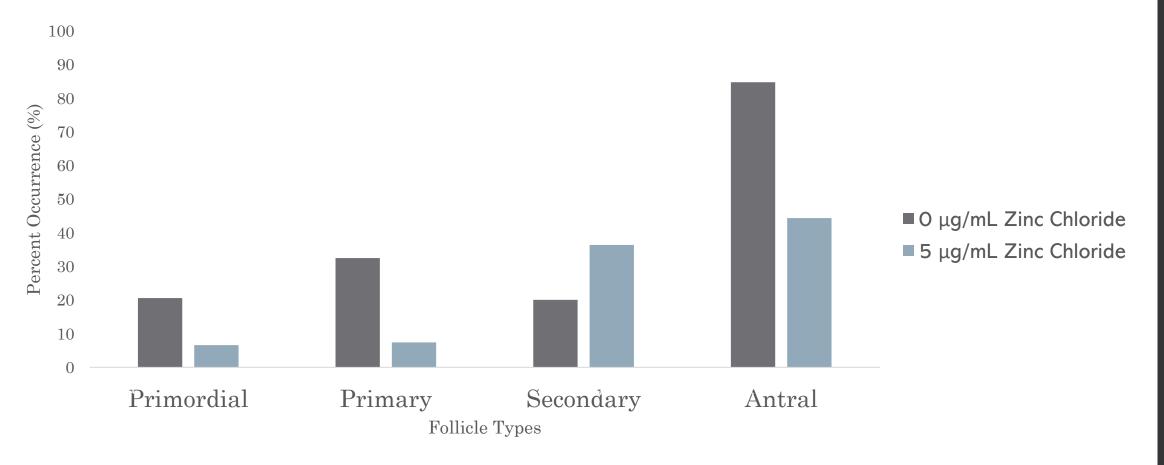



Follicle Evaluation

Primordial	Primary	Secondary	Antral
• Single layer of squamous cells	• Single layer of cuboidal cells/stratified epithelium	 Theca interna cells Granulosa cells Zona pellucida 	AntrumCumulus cells

Damage Characteristics

Zona Pellucida Disruption	No Defined Antrum	Theca Interna and Granulosa Cell Disruption	Follicular Cells in Cytoplasm


Follicle Counts

Treatment	Primordial (%)	Primary (%)	Secondary (%)	Antral (%)
$0 \ \mu g/mL \ ZnCl_2$	52.7^{a}	31.0 ^a	18.6ª	25.6^{a}
$5~\mu\mathrm{g/mL}~\mathrm{ZnCl}_2$	39.4^{b}	34.8^{b}	14.2^{b}	29.0^{b}

Total Follicle Damage

Treatment	Total Follicles (%)	Damaged (%)
0 μg/mL ZnCl ₂	100	46.5^{a}
$5~\mu m g/mL~ZnCl_2$	100	23.2^{b}

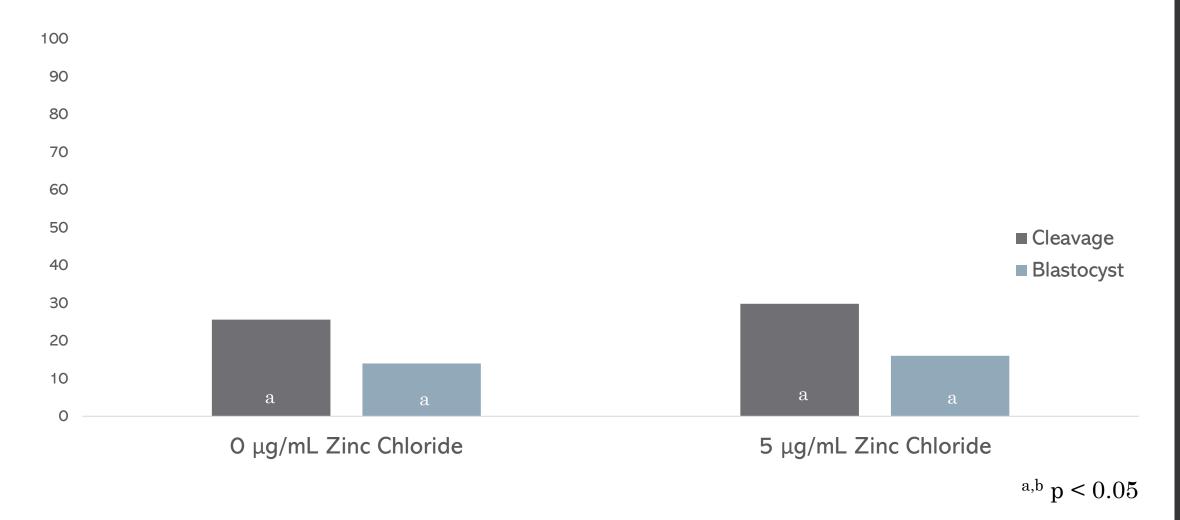
Type-Based Follicle Damage

^{a,b} p < 0.05

Fertilization Characteristics

Sperm Penetration Rates (%)

Media Supplementation	% Penetrated
0 μg/mL ZnCl ₂	78.60 ± 12.60
$5~\mu\mathrm{g/mL}~\mathrm{ZnCl}_2$	54.50 ± 14.20


Polyspermy Rates (%)

Media Supplementation	% Polyspermic
$0 \ \mu g/mL \ ZnCl_2$	$71.40 \pm 12.50^{\mathrm{a}}$
$5 \ \mu m g/mL \ ZnCl_2$	27.30 ± 22.40^{b}

MPN Rates (%)

Media Supplementation	% MPN Formation
$0 \ \mu g/mL \ ZnCl_2$	$36.40 \pm 13.70^{\mathrm{a}}$
$5~\mu m g/mL~ZnCl_2$	57.10 ± 11.10^{b}

Embryonic Development

Conclusion

- Supplementation of 5 mg/mL of $\rm ZnCl_2$
 - Improves follicle development:
 - Reduces incidence of follicular damage from vitrification
 - Improves follicular integrity
 - Increases antral follicle development
 - Improves post-thawing fertilization:
 - Reduces incidence of polyspermy
 - Increases male pronucleus formation

Questions?