Assessing the Use of Geometric and Feature Cues During Goal-directed Navigation in Whip Spiders (Phrynus marginemaculatus): A Pilot Study

Hannah Caram, Cecilia Robeson, and Sophia Beeler
 Advisor: Dr. Vincent "Gino" J. Coppola

ABSTRACT

Phrynus marginemaculatus, a species of whip spider, regularly relies on multi-sensory integration of various cues to orient in and navigate their natural environment. The aim of the current study was to investigate the visuospatial cue hierarchy that First, spiders were trained to discriminate a single goal location (an open shelter) from three alternative locations (closed shelters), defined by its position to both geometric (boundar shape) and feature (colored card) cues, in a rectangular arena. Probe trials were then intermittently conducted to isolate the of each cue or to set the two cues in conflict. The data revealed of each cue or to set the two cues in confict. The data revealed feature cue alone, but random performance when the two cues were set in conflict. While this pilot data is encouraging, we must incorporate another probe to directly assess learning of the goal location (currently underway)

BACKGROUND

- Homing behavior (i.e., the ability to return to a shelter/nesting site following a period of exploration) is displayed by a variety of animals (Papi, 2012).
- Homing insects have been shown to use a variety of cues and strategies to orient themselves and navigate through space (Mandal, 2018). For example

Ants (Gigantiops destructor; Wystrach \& Beugnon, 2009) and shape an enclosure (i.e., geometric information) for orientation. Honeybees (Apis mellifera) can learn visual features associated
with a goal location and nerby objects (Cheng, 2000)
Homing whip spiders (Amblypygids) have been found capable of using tactile, olfactory, and visual cues to navigate (Ortega-Escobar, 2020)

The current study set out to... test the ability of whip spid assess the visuospatial cue hierarchy for spatial learning in whip spiders

METHODS

Subjects consisted of 4 wild-caught (Florida) whip spiders (Phrynus marginemaculatus).

- Training trials were conducted in a rectangular $60 \times 30 \times 20$ cm arena made of white acrylic (Figure 1) and surrounded by a dark curtain

One 120 w light bulb was situated centrally overhead. Ony short wall adjacent to the correct location was made green with a thin piece of cardboard (visual cue).

- Probe trials in which the arena was manipulated were employed to assess cue use (Figure 1).
- Each animal completed 6 trials each day, over 15 days Days 1-3: exclusively training trials.
Days 4-15: the first and last trials were the same of one probe
type; four middle trials were training trials. type; four middle trials were training trials.
Probe type was pseudorandomized across
Probe type).
Each trial began with the animal placed at center of the arena.

Given 10 minutes to find the correct shelter (training) or choose a shelter (probe).
During training trials, the animal was given a two-minute trials. If no
he spider is muided to the the trial is marked "no choice" and Between trials, animals were disorienter.
tween trials, animals were disoriented for one minute

Overhead view of training and probe configurations. In training configuration, blue circle indicates open shelter while black circles
indicate closed shelters. In probe trials (all shelters open), green circle indicate a geo-correct, yellow a cue-correct, and red an incorr oice. Thick wall indicates the green cue wall in all configurations (save GEO-ONLY).

RESULTS

- Dependent measures:

Training trials (first 3 days only): average latency to escape. Probe trials: percentage of geo-correct, cue-correct, and incorre
First and second probe on each day were separately analyzed First and second probe on each day were separately analyzed.
Only the last two days of each probe were used in the analyses.

- A repeated-measures ANOVA revealed a non-significant decrease in the latency to escape over the three initia training days, $f(2,6)=0.54, p=.61$ (Figure 2)
- One sample t-tests failed to find significant differences in the percentage of geo-correct, cue-correct, or incorrect choices compared to chance performance (50% for geo, 25% for cue) during any of the probe trials.
- However, an interesting trend was found regarding the $2^{\text {nd }}$ probe trials of GEO-Only probes (Figure 2):

While the percentage of geo-correct choices $(M=75.00 \%, S D=$ 28.90%) was not significantly greater than chance $(50 \%), t(3)$
$1.73, p=.18$, the percentage of geo-incorrect choices $(M=$ $12.50 \%, S D=25.00 \%)$ was nearly significantly less than chance
$(3)=3.00, p=.06$. $t(3)=3.00, p=.06$

(Top) mean (+ - SEM) latency to escape (in seconds) across the first 3 days (18 trials) of training (no probe trials). (Bottom) mean (+ - SEM) percent of probe trial 2 (i.e. trial 6) choices in that were geo-correct and geo-incorrect (last two GEO-ONLY probes). Dashed line indicates chance performance (50%).

DISCUSSION

- Conclusions

The current study failed to find evidence of learning to locate he goal location as measured by the latency to escape ove位sever, whip spiders showed trons geometric information by the end of training each day, though these analyses failed to reach statistical significance.

- In sum, the data suggests that whip spiders, like ants (Wystrach \& Beugnon, 2009) and bees (Sovrano et al. 2012), might be cable of using geometric information during spatial learning, and that perhaps such information precludes the use of visual features (considering the lack learning about the visual cue in the current study)
Limitations include a small sample size ($\mathrm{n}=4$), habituation to training (decreased motivation in later trials), and lack of a probe trial designed to test learning of the trained shelter location.

We are currently testing more animals following the same procedures described here, but with the addition of a TRAINING probe (i.e., with the arena in the training configuration, but with all shelters open).

Future studies might simplify the procedures to focus solely on geometry use and consider shortening the amount of time animals are trained.

REFERENCES

Cheng, K. (2000). How honeybess find a place: Lessons from a simple mind. Animal Learring \& Behavior, 28(1), 1-15.
Mandal, . (2018). How do animals find their way back home? A brief overview Mandal, S. (2018). How do animals sind their way back home? A A bief overview
of homing behavior with special reference to social Hymenoptera. Insectes Sociaux, $55(4), 521-536$.
Ortega-Escobar, J. ((2020). Homing in
Animal Cognition 23, 1189-1204
Papi, F. (Ed.). (2012). Animal homing. Springer Science \& Business Media
 Geometry in Bumblebees. PLOSONOE, 7(5), e37449.
Wystrach, A. \& \& Beygnon, G. (2009). Ants Learn Geometry and Features.
Current Biology, Ig(1), 61-66.
ACKNOWLEDGEMENTS
This research was supported by a National Science Foundation grant (IISS
$1457304)$ awarded to Drs. Dan Wiegmann and Verner P. Bingman at Bowlige 1457304) awarded to Drs. Dan Wiegmann, and Verner P. Bingman at Bowling
Green State University. We would also like to thank our collaborator Patrick Casto (BGSU)

