Gelstein Aglycone in the Prevention and Treatment of Osteoporosis in Peri- and Postmenopausal Women

Katharine Tjaden, PA-S

The University of Findlay

INTRODUCTION

The phytoestrogen gelstein aglycone (GA) is one of the most researched phytoestrogens. Phytoestrogens like GA behave similarly to selective estrogen receptor modulators (SERMs). SERMs increase the risk for cardiovascular events. Traditional SERMs increase the risk for cardiovascular events. Bisphosphonates work together and increase BMD more than either alone.1 HRTs increase risk of colorectal carcinogenic events. Traditional SERMs increase the risk for colorectal carcinogenic events. 2 GA could be used as an alternative monotherapy in peri- and postmenopausal women who cannot tolerate the side-effects of SERMs or in a combination therapy with a bisphosphonate. Having an effective, safer alternative to traditional HRT and current SERMs would provide peri- and postmenopausal women a SERM-like estrogen substitute to prevent and treat osteoporosis.

MECHANISM OF ACTION

Genistein aglycone stops bone destruction and also increases new bone formation. Gelstein increases osteoprotegerin (OPG), which is produced by osteoblasts and binds to receptor activator of NF-κB ligand (RANKL). This downregulates the action of osteoclasts. GA also increases the presence of ALP, indicating the upregulation of osteoblastic activity.2,3,4,5

Genistein aglycone has a higher affinity for ERβ than ERα.6 Breast, endometrium, and ovaries are similar to each other in that they contain estrogen receptors.7,8,9 However, their rate of metabolism is slower than humans.10 This means that rats and mice are not good models for testing the effects of GA.

RESULTS

Pharmacokinetics: The pharmacokinetics of GA are nonlinear at high doses. Doubling of the dose orally does not result in a doubling of serum concentration. GA increases serum concentration of total GA regardless of dose occurs at an average of 5 hours for men and women.11,12

Oral administration of GA is viable due to the high absorption rate in the intestines. However, the liver also rapidly metabolizes and metabolizes the GA. The slow release of GA from the liver combined with the nonlinear pharmacokinetics of saturable absorption in the intestines suggests taking multiple smaller doses daily rather than one large or moderately sized dose for maximum steady state concentration.13

The pharmacokinetics of GA in men and women are nearly identical. However, male and female rats vary considerably in metabolism to each other and to humans. Male and female mice are similar to each other in respect to the metabolism of GA.14 However, differences in pharmacokinetics of metabolism of GA, however their rate of metabolism is slower than humans.12 This means that rats and mice are not good models for testing the effects of GA.

RESULTS CONT.

Safety: Breast Cancer: Breast cancer (BC) proliferates with the presence of estrogen. ER-α upregulates the gene expression that proliferates BC cells. ER-β upregulates gene expression that limits the proliferation of BC cells. ER-β is usually missing or severely reduced on the surface of BC cells. Low concentrations of GA in vitro when ER-β is present down regulate the proliferation of BC cells. GA used at therapeutic doses in animal models does not lead to proliferation of BC cells.15

Ovarian Cancer: GA down regulates miR-27a, which is a gene involved in regulating some cancers. This helps prevent the growth and spread of ovarian cancer. The cell signaling molecules vascular endothelial growth factor and its receptor are down regulated, cot with GA could help. At high levels, GA causes apoptosis among ovarian cancer cells. At low levels, GA displays anti-oxidant properties without causing apoptosis.16,17 This generally indicates that genistein is safe for use in women with intact ovaries.

Uterine Cancer: Postmenopausal women experience no appreciable decrease in uterine thickness.18 In utero, GA increases the systemic levels for treatment of osteoporosis will not lead to endometrial hyperplasia.19 Furthermore, GA is indicated for pregnant women with a uterus.

Cardiovascular disease: GA raised HDL levels significantly. However, LDLs, triglycerides, and cholesterol were not lowered in a statistically significant way compared to the placebo in the general population of postmenopausal women. Homocysteine levels were also reduced in postmenopausal women taking GA compared to the placebo.20,21 Furthermore, it is rare to estimate that GA will not increase the risk of CVD in postmenopausal women.

Thyroid Health: GA has gotrogenic qualities and can negatively affect thyroid hormone levels in vitro.22 However, postmenopausal women receiving therapeutic levels of GA in no way change thyroid hormone levels.23,24 Inosines consumed at dietary levels in individuals who are underfed adequate caloric levels will not lead to thyroid dysfunction.25

DISCUSSION

GA has potential for treatment and prevention of osteoporosis in peri- and postmenopausal women. In March of the research that exists uses various animal models, has not verified the purity of the GA used.26,27,28,29,30,31 While having SERM uses various animal models, has not verified the purity of the GA used. However, studies evaluating their effectiveness did not independently verify their purity. Many of the supplements do not contain their stated concentrations, and many of the studies investigating the effects of GA in survivors of certain cancers creates opportunities for research.

Research that administered doses within the biphasic model of GA and peri- and postmenopausal women in March of the research that exists also present in the studies evaluating safety. Excessively high dosing, not following the group long enough for proper evaluation, or not involving certain cancers creates opportunities for research.

Genistein aglycone is promising in the future treatment and prevention of osteoporosis in peri- and postmenopausal women in combination with bisphosphonates or as an alternative to traditional medications. This demonstrates that GA can be used as an alternative to traditional medications for those who cannot tolerate more traditional medications.

REFERENCES


Great thanks to Professors Sharon Gentry, PA-C and Abigail Allen, PA-C for providing guidance on this paper and to the Graduate Writing Center of the University of Findlay.