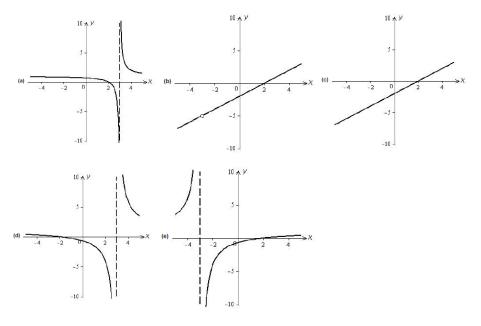

Practice Questions for University of Findlay Placement Test C (Calculus Readiness Skills)

This is only a sampling of the types of questions that a student may see on the placement test. Question 1: (1 point)

A function is increasing on the interval [a, b] if and only if $f(x_1) < f(x_2)$ whenever $x_1 < x_2$ are numbers in [a, b]. Of the following, which best represents the graph of a function that is increasing on [1, 2] and [4, 5], but not increasing on the interval (2, 4)?


Question 2: (1 point)

A rectangle has sides of length x and width y. The length is doubled and the width is halved. Which equation gives the new perimeter?

(a)
$$P = xy$$

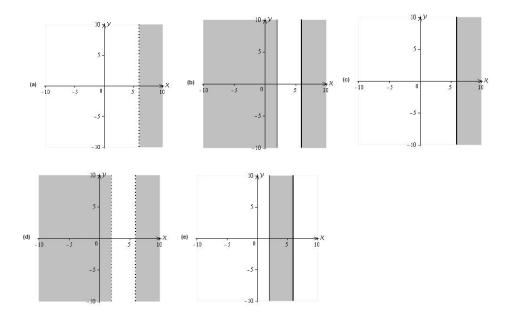
(b) $P = 4 \ x + y$
(c) $P = x^2 + \frac{y}{2}$
(d) $P = 2 \ x^2 + \frac{y}{4}$
(e) $P = 2 \ x + \frac{3}{4}$

y

Of the following, which best represents the graph of $f\left(x
ight)=rac{\left(x-2
ight)\left(x+3
ight)}{\left(x+3
ight)}?$

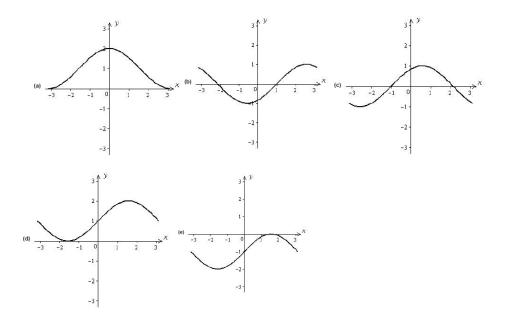
Question 4: (1 point)

If
$$F(x-2) = \frac{x+3}{x-4}$$
, then $F(5) =$
(a) $\frac{11}{2}$
(b) 6
(c) 8
(d) $\frac{10}{3}$
(e) $-\frac{3}{4}$


Question 5: (1 point)

Which of the follwoing is the solution to $\log_2 16 = 8\cdot 2^{-x}$?

(a) $-\frac{2}{3}$	
(b) -13	
(c) 1	
(d) —5	
(e) $-\frac{1}{2}$	


Question 6: (1 point)

Of the following, which best represents the graph of $|x-4|\geq 2?$

Question 7: (1 point)

Of the following, which best represents the graph of $f(x) = \sin x + 1, -\pi \leq x \leq \pi$?

A box is x feet wide. It is twice as long as it is wide and 8 feet high. Which formula gives the volume of the box?

(a)
$$V = 16 x^2$$

(b) $V = 2 x^2 + 8$
(c) $V = 3 x + 8$
(d) $V = 8 x^3$
(e) $V = 4 x^2$

Question 9: (1 point)

Let
$$f(n) = \begin{cases} 2 n+1 & \text{if } n \text{ is odd} \\ f(n-1) & \text{if } n \text{ is even} \end{cases}$$
 for $n = 1, 2, 3, \dots$ the value of $f(5) + f(8)$ is

(a) 30
(b) 26
(c) 28
(d) 18
(e) 27